范文村范文村

《面积》教案(精选12篇)

时间:教案网

《面积》教案(精选12篇)

《面积》教案 篇1

  教学内容:

  教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:

  进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:

  能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

《面积》教案 篇2

  教学目标:

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学过程:

  一、情境激趣

  1.创设喜羊羊与灰太狼比较草皮的大小而争吵的故事。

  2.引导学生观察它们的草皮各是什么形状?

  喜羊羊:平行四边形 灰太狼:长方形

  3、提问:长方形的面积怎么算?

  4、揭示课题:平行四边形的面积

  二、自主探究

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写书上87页表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积

  一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找

  到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:平行四边形的面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (4)利用课件演示把平行四边形变成长方形过程。

  (5)观察并思考以下两个问题:

  A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的.长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  (2)学生独立完成并反馈答案。

  三、巩固运用

  1.明辨是非

  2.你会计算下面平行四边形的面积吗?

  3.你能想办法求出下面平行四边形的面积吗?

  4.练习十五第3题。

  四、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

  五、教学设计

  平行四边形的面积

  长方形的面积 = 长 × 宽

  平行四边形的面积= 底 × 高

《面积》教案 篇3

  教学内容:

  《三角形的面积》是人教版小学数学第九册第84---85页的教学内容。也是继长方形、正方形面积之后又一平面图形面积的计算课,它是学习平行四边形、梯形面积的基础,在教材中具有承上启下的重要作用。

  教学目标

  知识与技能:

  探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  培养学生应用已有知识解决新问题题的能力。

  过程与方法:使学生经历操作,观察,讨论。归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  情感,态度与价值观:数学从生活中来到生活中去,充分让学生体会到数学在生活中的作用。让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  重难点和关键:

  重点:探索并掌握三角形的面积公式,能正确计算三角行的面积。

  难点:理解三角形面积公式的推倒过程。

  关键;让学生经历实际操作,合作交流,归纳发现和抽象公式的过程。

  教学设计

  教具准备:课件和实物投影仪以。

  学具准备:每小组至少准备相同的三角形(锐角,钝角,直角)各2个。

  《标准》中指出:“数学教学,要紧密联系学生的生活环境,从学生的经验知识和已有经验出发,创设有助于学生自主学习,合作交流的情景,使学生通过观察、操作、归纳、类比、交流等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。”本节课我注重了数学从生活中来,到生活中去的教学理念。由殷墟的环境的美化到动手操作,探索三角形面积的计算得出计算公式;再到练习计算,最后再回到为殷墟环境设计方案。同时,本节课充分体现了“问题意识的培养”。用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。.本节课还重视研究问题的过程,以发展学生的创造思维为重点。通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。课的最后又注重了数学在生活中的作用。让学生能从数学的角度解决生活中的数学问题。

  教学过程:

  (一)创设情景,激发情趣

  师:“同学们,你们看,这是美丽壮观的殷墟的全景图。.园林工人准备将其中的一块长方形的草坪改种为安阳市的市花紫薇花和兰花草。要求将长方形草坪平均分2份,怎样分?(学生回答平均分地的方法)同学们想出了这么多的办法,园林工人准备这样种植,将长方形平均分成两个直角三角形。一个直角三角形多少平方米呢?只知道长方形的长是8米,宽是4米,你能求出三角形的面积吗?”(学生列式并说出理由)8×4÷2=16(平方米)

  揭示课题:“直角三角形的面积可以转化成长方形的面积来计算。那么不是直角的三角形的面积该如何计算呢?今天我们就来探究三角形的面积。”

  (板书课题:三角形的面积)

  [从实际生活出发,用长方形面积来求直角三角形的面积。渗透转化的数学思想,为下面要开展的三角形面积探究活动提供思路支持。以旧引新,沟通知识间的联系为学习新知识作好铺垫,同时也为建构知识体系搭建桥梁。]

  二,自主学习,探索新知

  同桌合作,拼摆学具,探索三角形面积公式。

  三角形和拼成的平行四边形有什么关系?通过实验可以看到,两个完全相同的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成平行四边形面积的一半,所以可以推出三角形的面积=-底×高÷2 s=ah÷2。

  [指导学生实践探究,自主应用转化思想充分感受图形的变化过程,为进一步生成计算方法提供认知素材。在实践操作的基础上,引导学生经历观察,反思转化的过程,自主推导计算方法,在与同学的合作交流中,逐步生成对计算方法的准确认识。在这一过程中,充分让小组成员汇报合作学习的结果,生与生之间,师与生之间相互评价,互助互动,最终实现成果共享。在整个学习活动的过程中学生的主体地位得到了同伴和教师的共同关注。]

  三.巩固练习(课件出示)

  1.计算(集体练习,反馈)

  2.判断(指名回答)

  3.设计方案(小组合作)

  [练习中巩固新知,熟练利用三角形面积公式解决实际问题。练习的设计不但重视了多样化的特点,还注意了练习内容的新颖性、启发性、趣味性、开放性、生活性的特点。通过不同形式、不同层次的练习,使全体学生都得到发展。]

  四.自谈收获,小结

  同学们,刚才我们通过实验得出了三角形的面积公式。其实早 在2000年前,我们聪明的中国人就想出了这个公式。记录在著名的《九章算术》中。书上说三角形的面积是:"半广以乘正从"。意思就是说三角形的面积=底×高÷2。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?

  [对学生进行科学教育及思品教育,让学生树立信心,提高学生学习数学的兴趣。让学生在活动中学习数学是《数学课程标准》中提倡的学习方式。在过去的教学中,教师讲的多,占用时间多。而本课从旧知引入——操作探究——反思发现——交流归纳——实际应用等这些环节,都是以学生活动为主,让学生自主探究,,在尝试中有所发现,在交流中享受成功,在拓展中发现自我。

  揭示课题:“直角三角形的面积可以转化成长方形的面积来计算。那么不是直角的三角形的面积该如何计算呢?今天我们就来探究三角形的面积。”

  (板书课题:三角形的面积)

  [从实际生活出发,用长方形面积来求直角三角形的面积。渗透转化的数学思想,为下面要开展的三角形面积探究活动提供思路支持。以旧引新,沟通知识间的联系为学习新知识作好铺垫,同时也为建构知识体系搭建桥梁。]

  二,自主学习,探索新知

  同桌合作,拼摆学具,探索三角形面积公式。

  三角形和拼成的平行四边形有什么关系?通过实验可以看到,两个完全相同的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高,因为每个三角形的面积等于拼成平行四边形面积的一半,所以可以推出三角形的面积=-底×高÷2 s=ah÷2。

  [指导学生实践探究,自主应用转化思想充分感受图形的变化过程,为进一步生成计算方法提供认知素材。在实践操作的基础上,引导学生经历观察,反思转化的过程,自主推导计算方法,在与同学的合作交流中,逐步生成对计算方法的准确认识。在这一过程中,充分让小组成员汇报合作学习的结果,生与生之间,师与生之间相互评价,互助互动,最终实现成果共享。在整个学习活动的过程中学生的主体地位得到了同伴和教师的共同关注。]

  三.巩固练习(课件出示)

  1.计算(集体练习,反馈)

  2.判断(指名回答)

  3.设计方案(小组合作)

  [练习中巩固新知,熟练利用三角形面积公式解决实际问题。练习的设计不但重视了多样化的特点,还注意了练习内容的新颖性、启发性、趣味性、开放性、生活性的特点。通过不同形式、不同层次的练习,使全体学生都得到发展。]

  四.自谈收获,小结

  同学们,刚才我们通过实验得出了三角形的面积公式。其实早 在2000年前,我们聪明的中国人就想出了这个公式。记录在著名的《九章算术》中。书上说三角形的面积是:"半广以乘正从"。意思就是说三角形的面积=底×高÷2。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?

  [对学生进行科学教育及思品教育,让学生树立信心,提高学生学习数学的兴趣。让学生在活动中学习数学是《数学课程标准》中提倡的学习方式。在过去的教学中,教师讲的多,占用时间多。而本课从旧知引入——操作探究——反思发现——交流归纳——实际应用等这些环节,都是以学生活动为主,让学生自主探究,,在尝试中有所发现,在交流中享受成功,在拓展中发现自我。

《面积》教案 篇4

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

《面积》教案 篇5

  【教材分析】

  本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

  【教学目标】

  知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

  情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

  【学情分析】

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

  【教学过程】

  一、创设情境,引入课题。

  1、游戏:小小魔术师。教师出示不规则图形。

  (1)师:你能直接计算出这个图形的面积吗?

  (2)师:你能计算出这个图形的面积吗?说一说用什么方法?

  (3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  (设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

  二、激趣引思,导入新课。

  师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

  生1:我想知道要花多少钱才可以做成。

  生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

  生3:我想知道这块胶合板的面积有多大。

  师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

  (设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

  三、动手操作,探究发现。

  1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

  师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

  教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

  (1)这个平行四边形的面积是多少平方厘米?

  (2)它的底是多少厘米?

  (3)它的高是多少厘米?

  (4)这个平行四边形的面积跟它的高与底有什么关系?

  (5)请同学们猜一猜:怎样计算平行四边形的面积?

  2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

  我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

  生:不方便。

  师:既然不方便,我们能不能用更方便的方法来解决呢?

  小组交流,学生讨论,发表意见。

  生:用剪和拼的方法。

  师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

  师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

  师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

  师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的?

  (生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

  师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

  师:再请一个同学展示一下,他的剪法有什么不一样吗?

  (生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

  师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

  小组讨论:

  ⑴原来平行四边形的面积和拼成的长方形的面积相等吗?

  ⑵原来平行四边形的底与拼成的长方形的长有什么关系?

  ⑶原来平行四边形的高与拼成的长方形的宽有什么关系?

  师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)

  师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

  生:平行四边形的面积=底×高(板书)

  师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

  教师小结方法指名让生叙述。

  师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

  师:现在我们可以确定当初的猜想谁是正确的?

  (设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

  四、实践应用,巩固提高。

  师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

  教师板书:5×4=20(平方米)

  出示例1 (同桌讨论,独立完成,最后全班交流。)

  教师板书:S=ah=6×4=24(平方米)

  师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

  (设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

  五、分层练习,强化应用。

  1、填空。

  (1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

  (2)0.85公顷=( )平方0.56平方千米=( )公顷

  2、计算下面各个平行四边形的面积。

  (1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

  3、解决问题。

  (1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

  (2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

  (设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

  六、总结升华,拓展延伸。

  1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

  (设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

  2、课后练习

  (1)、练习十五第1题,第2题。(任选一题)

  (2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

  平行四边形的面积练习题

  1、填一填

  (1)1平方米=( )平方分米=( )平方厘米

  (2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

  转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

  (3)平行四边形的面积=( )×( ),字母公式为( )

  (4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

  (5)等底等高的两个平行四边形的面积( )

  2、判断

  (1)形状不同的两个平行四边形面积一定不相等( )

  (2)周长相等的两个平行四边形面积一定相等( )

  (3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积( )

  3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

  24厘米

  50厘米

  升级跷跷板

  4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

  5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

  6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

  智慧摩天轮

  7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

  8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

  平行四边形的面积教案设计

  【教材分析】

  本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。

  (教学目标)

  知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。

  过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。

  情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。

  【学习情况分析】

  平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积的计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。

  (教学过程)

  首先,创建情景并引入主题。

  1.游戏介绍:小魔术师。老师展示不规则的图形。

  老师:你能直接算出这个图形的面积吗?

  老师:你能算出这个图形的面积吗?告诉我怎么用它?

  老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?

  2. 小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)

  (设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道

  平行四边形的面积教案设计

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ②填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的`面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( )和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

  平行四边形的面积教案设计

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

  平行四边形的面积教案设计

  平行四边形的面积计划学时1

  学习内容分析

  学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究平行四边形的面积,计算平行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。

  学习者分析

  根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,

  教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。

  2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  过程和方法:合作学习,自主探索

  情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  知识点学习水平媒体内容与形式使用方式使用效果

  平行四边形面积的计算还未学平行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示平行四边形与长方形的转换过程在ppt展示平行四边形与长方形的转换过程使得同学更形象生动了解长方形和平行四边形之间的转换,有利于同学推导出平行四边形的面积公式

  课后练习同学们已经学习了平行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解平行四边形公式,有利于同学的学习

  教学过程

  教学环节教学内容所用时间教师活动学生活动设计意图

  展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为平行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出平行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫

  让同学们通过已经学习的知识计算平行四边形的面积

  同学们通过已经学习的知识计算平行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出平行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。

  通过ppt的转换总结得出平行四边形面积公式平行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换平行四边形展示出来引导同学说出平行四边形的面积对刚刚的学习进行总结,得出平行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍平行四边形的"高"和"底".让学生体验将平行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣

  对平行四边形公式进行巩固练习同学已经学平行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心

  课堂教学流程图

  教学过程

  一、情境创设,揭示课题

  师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?

  生:平行四边形

  师:对了,就是平行四边形,你们在这个过程中什么改变了什么没有发生改变呢?

  生:形状,角度,面积

  师:那面积是变大还是变小

  生:此时回答不一

  教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)

  二、创设问题情景,引发自主探索.

  1、提出问题,鼓励猜测

  那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

  2、自主探究、验证猜测:

  师:用剪刀把平行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?

  3、展示成果,互相交流

  同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和平行四边形的面积关系

  指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。

  方法二:转化法

  师:有什么发现?

  师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?

  生:长方形的长等于平行四边形的底、宽等于平行四边形的高

  师:是这样吗?师课件演示解说强调平移

  师:还有其他的剪拼方法吗?

  4、整理结论

  师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的平行四边形之间,你发现了什么?

  提问:(1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  师:你们觉得这几种方法有没有共同之处?

  (都是沿高剪开的,都是把平行四边形转化成长方形)

  课件演示,结合课件填写各部分间的相等关系。

  板书:底=长高=宽长方形的面积=正方形的面积

  师:我们一起读一下我们发现的结论。

  师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

  师:你学到了些什么?

  师:如果用表示S平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:S=ah

  三、方法应用

  师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

  师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

  师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是平方厘米呀?

  四、梳理知识,总结升华

  师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?

  五、课堂检测

  修改建议

  结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。

《面积》教案 篇6

  设计说明

  1.多媒体的运用贯穿教学始终,突破教学重难点。

  本节课通过播放课件“龟兔刷墙”而引入新课,极大地激发了学生的学习兴趣。问题的提出,使学生产生了解决问题的迫切愿望,接着结合学生的生活实际融入多媒体技术创设不同的实验任务;通过多媒体演示长方形和正方形的内在联系,形象、生动地由长方形演变到正方形,类推出正方形面积的计算公式;利用多媒体技术,结合学生的生活实际创设课堂训练,学生通过解答问题巩固已掌握的知识,提高解决实际问题的能力。

  2.运用自主、合作、探究的学习方式达成教学目标。

  《数学课程标准》指出:学生学习活动不能简单的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习的重要方式。在课堂上,使每个学生积极地投入到探究学习的过程中,通过猜测把所学知识紧密联系在一起,激发了学生学习的积极性。让学生主动探究,在探究中思考,在思考中积累知识。在小组合作学习的过程中,小组内同学相互帮助,不仅解决了问题,还增强了学好数学的自信心。

  3.注重学习方法的指导。

  在长方形面积计算公式的推导过程中,本设计引导学生先动手操作,再观察发现,最后得出结论。引导学生在小组合作中,通过操作学具和统计表格,发现长方形的面积正好是所有小正方形的面积之和,从而总结出长方形的面积计算公式,激发学生学习数学的积极性,培养学生自主学习的能力,充分体现了“知识固然重要,但方法比知识更重要”这一教学价值观。

  课前准备

  教师准备 PPT课件 直尺 面积是1平方厘米的正方形 彩纸 表格

  学生准备 直尺 面积是1平方厘米的正方形 彩纸

  教学过程

  ⊙创设情境,故事导入

  师:同学们,你们听过“龟兔赛跑”的故事吗?有一天,乌龟又遇到了兔子,并向兔子提出了挑战,这次进行粉刷墙面的比赛,看谁能赢?

  1.课件出示:兔子粉刷一块长方形的墙面,乌龟粉刷一块正方形的墙面,它们同时开始,同时完工。

  2.学生会出现争议,教师引导:怎样才能比较出谁赢了?(要先知道它们粉刷墙面的面积到底哪个大些)

  3.揭示课题。

  师:在实际生活中,有些物体的面积用单位面积去量既不方便又不符合实际,这就需要我们找到一种计算面积的方法,今天我们就一同来学习长方形和正方形面积的计算方法。(板书课题:长方形、正方形面积的计算)

  设计意图:在学习新课之前,创设学生感兴趣的“龟兔刷墙”的情境,能迅速而有效地吸引学生的注意力,激发学生的学习兴趣,为下面开展教学作铺垫。

  ⊙观察发现

  1.课件出示教材66页例4中的问题(1)。

  师:你能求出这个长方形的面积吗?你想到了什么办法?拿出学具来试一试吧。

  2.小组合作,在长方形里摆边长为1厘米的正方形。

  师:能展示一下你们摆的结果吗?

  预设

  (1)学生用正方形(面积单位)铺满整个长方形。

  (2)学生可能只在长边和宽边上摆出面积单位。

  (3)学生直接说出用5×3=15,就是长方形的面积。这时也让学生用手中的学具摆一摆,说明自己这样计算的道理。

  设计意图:通过学生在长方形中摆面积单位,突出面积计算的本质是对面积的度量。让学生想象将长方形全部铺满,体现出必须用面积单位密铺所测图形,这时通过所铺面积单位的个数就可以求出图形的面积。

  3.通过追问,突出数面积单位个数的方法。

  组织学生思考以下两个问题:

  (1)为什么要用面积单位将长方形全部铺满?预设中的第二种情况是什么意思?(使学生明确尽管只铺了一部分,通过想象,也可以数出铺满后所有面积单位的个数)

  (2)你是怎样数出全部面积单位的个数的?请结合下图一起数一数。

  学生汇报:

  一种情况:一个一个的数,大家一起再数一数。

  另一种情况:用5×3=15(个),说一说5表示什么?3表示什么?15表示什么?(5表示每行摆5个,3表示有这样的3行,15表示一共有15个面积单位,也就是长方形的面积)

  (3)思考:长方形的长、宽与面积单位的个数有什么关系?长方形的面积与它的长、宽有什么关系?

  师小结:可以用长×宽来计算这个长方形的面积。

  设计意图:通过学生交流数出面积单位个数的方法,明确每行个数与行数以及面积单位总个数之间的关系,为最后概括出长方形面积计算公式作准备。

  ⊙自主探究

  师:其他长方形的面积是不是也可以用“长×宽”来计算呢?想不想验证一下?请同学们以小组为单位进一步验证。

  1.教师让学生任取几个1平方厘米的正方形,摆成不同的长方形(至少摆3个)。一个同学记录,其他同学摆,边操作,边填表。(出示课件)

  2.选3名同学到黑板上摆,再汇报摆的长方形用了( )个面积为1平方厘米的正方形,面积是( )平方厘米,长是( )厘米,宽是( )厘米。因为( ),所以我发现这个长方形的面积等于( )。

  3.(1)若有学生摆出了正方形。要求正方形的面积,该怎样计算呢?

  (2)教师通过课件出示下面几个图形,让学生计算每个图形的面积。

《面积》教案 篇7

  教学目标

  1.使学生在观察、操作等活动中初步理解面积的含义。

  2.使学生经历比较两个图形面积大小的过程,体验多种比较策略。

  3.使学生在学习活动中体会数学与生活的联系,激发学习的兴趣,发展初步的空间观念。

  教学过程

  一、创设情境,游戏导入

  师:同学们,今天来了这么多听课老师,我们用最热烈的掌声表示欢迎。好吗?

  [评析:借助拍手的情境导入新课。

  二、初步感知,认识面积

  1.揭示面积的含义。

  师:我们拍手的时候,两只手碰击的地方就是手掌面,谁来摸一摸老师的手掌面?(学生摸老师的手掌面)

  师:你们的手掌面在哪儿?摸一摸自己的手掌面。(学生摸自己的手掌面)

  师:(摸数学书的封面)这是数学书的封面。老师的手掌面和数学书的封面比,哪一个面大?

  生:数学书的封面大,手掌的面小。

  师:把刚才的话说完整,好吗?

  生:数学书的封面比手掌面大,手掌面比数学书的封面小。

  师:伸出你们的小手,也摆在数学书封面上,比一比大小。

  生1:数学书的封面比我的手掌面大。

  生2:我的手掌面比数学书的封面小。

  师:数学书的封面和黑板的表面比,哪个面大呢?

  生:数学书的封面比黑板的面小,黑板的面比数学书的封面大。

  师:(指黑板面)像这里,黑板面的大小就是黑板面的面积。(板书:面积)你能说一说什么是数学书封面的面积吗?

  生:数学书封面的大小就是数学书封面的面积。

  [评析:摸一摸老师的手掌面,摸一摸自己的手掌面、数学书的封面,以及观察黑板的表面等等,用学生自己身边熟知的事物,借助于学生的生活经验,让学生充分感知,引发新知的生成。在学生沉浸于生活体验时,揭示本节课的主题面积的含义。及时地把生活经验概括为数学知识,把生活语言提升为数学语言:黑板表面的大小就是黑板面的面积,数学书封面的大小就是数学书封面的面积等。先就具体事物,说明面积的意义,为面积概念的形成打下感性认识的基础。]

  2.摸一摸,说一说。

  师:在我们身边还有很多物体,桌子、凳子、练习本、文具盒等等。这些物体都有面,这些面的面积有大有小。现在,请同学们选择其中的两个面比一比,哪个面的面积大,哪个面的面积小?

  生1:课桌面的面积比凳子面的面积大。

  生2:练习本封面的面积比课桌面的面积小。

  [评析:摸身边物体的表面,观察桌子、凳子、练习本、文具盒等物体的表面,并且比较两个面的大小,能加深学生对物体的表面有大有小,可以比较大小的认识,巩固面积概念。同时,还可以渗透全等形等积和面积的可加性等公理,以及其他等量公理,为引进面积单位以及用直接计量法求面积打下基础。]

  三、操作实验,比较大小

  1.涂一涂。

  师:我们研究了这么多物体表面,看过了,也摸过了,想不想再动手涂一涂呢?(想)好,全班分成两大组,来个涂色比赛。请听清两个要求:第一,发给你们的图形要涂满,不能有空隙;第二,老师说开始,才可以动笔涂,时间1分钟。请小组长打开1号信封,每人发一张纸。(小组长按要求发给每个学生一张白纸)

  师:准备好了吗?开始!

  学生涂色。

  师:时间到,涂好的同学请举手。下面,我隆重宣布比赛结果:小组获胜。获胜的小组,把你们的作品举起来,给大家看看。

  生1:太不公平了!我们不服气。

  生2:他们涂的纸比我们的小多了。

  生3:看看我们的纸,比你们的大多了。

  师:你们小组的纸大,他们小组的纸小,也就是你们小组要涂的什么大?

  生:我们小组要涂的面积比他们小组要涂的面积大得多。

  [评析:创设激趣的问题情境,让学生形成认知冲突,造成愤悱的心理状态。咱们研究了这么多物体表面,看过了,也摸过了,想不想再动手涂一涂呢,分成两大组,来个涂色比赛,学生兴致盎然。而教师事先发给两组涂色的图形的面积不一样,一组比较小,另一组要大得多,当然涂起来用的时间就多。这样,当学生看到事实真相之后,对面积的大小也就有了更强烈的感受。]

  2.练一练。

  (1)想想做做第2题。

  出示同一幅中国地图上描下来的四个省的图形。

  师:这是从同一幅中国地图上描下来的四个省的地图。你能看出哪个省的面积最大,哪个省的面积最小吗?

  生:四川省的面积最大,江苏省的面积最小。

  (2)画面积不一样大的图形。

  师:下面请大家动动手,画出两个面积不一样大的图形。

  生按要求画两个面积不一样大的图形。

  选择3~4幅在投影仪上展示,并比较两个图形的大小。

  师:同学们画出的这些图形,都能比较出面积的大小吗?(能)

  (3)想想做做第5题。

  出示校园平面图。

  师:咱们再来看一幅校园平面图。选择其中两个图形,比一比所占土地面积的大小。

  生1:运动场的面积比生活区的面积大。

  生2:水池的面积比花坛的面积小。

  生3:办公楼的面积和生活区的面积差不多。

  师:到底是办公楼的面积大,还是生活区的面积大呢?能一眼看出来吗?

  生:看不出来。

  师:怎样比较这样看上去面积差不多的两个图形的面积呢?我们来看下面的例子。

  [评析:相差悬殊的两个面面积的大小,凭观察就能做出判断。对于两个面积差不多的图形,要比较大小就得另想他法。]

  (4)比较图形的面积。

  师:(出示面积接近的正方形和长方形)这两个图形哪个面积大呢?(学生意见不一)

  师:咱们光用眼睛看,难以准确地做出判断。你们能不能想想其他的办法?

  学生在小组内议论。

  师:为了方便大家比较,老师为你们提供了一些材料:4个小方块、纸条、尺子。大家可以借助这些材料,想办法比较它们的大小。

  学生在小组内活动,教师巡视。

  组织反馈。

  [评析:问题是启发式教学的驱动器。抓住了问题,就抓住了课堂教学的切入点。当老师出示两个面积很接近的图形时,引起了学生的争论。这个时候的学生,是带着问题在思考,策略的探求已经从外压转化为求知的内需。]

  四、实践运用,解决问题

  1.想想做做第3题。

  出示图形。

  师:下面四个图形,哪个图形的面积大一些?你们有比较的办法吗?

  生:数格子!

  师:那么,我们就用数格子的方法来比较这些图形的大小。

  学生在书上数出结果,写在每个图形旁边。

  学生独立完成后,组织汇报。(数梯形的面积时出现了分歧,有少数学生的答案是20格。)

  师:究竟哪一个答案正确?

  生:应该是18格,梯形中的4个半格合起来是2格。

  师:通过数格子,我们知道哪个图形的面积最大?

  生:梯形的面积最大。

  2.出示下图:

  师:小明家用方砖铺地,还剩下两个部分没有铺,如果铺满这两块空地,哪块空地用的方砖多?

  学生在小组内讨论,交流各自的想法。

  师:两块空地各用多少块方砖?

  生:第一块空地要用16块方砖,第二块空地要用18块方砖。

  师:你是怎么知道的?

  生:可以数空的格子。

  师:怎样才能把这两块地的空格数准确呢?

  生:可以把空出的格子先画出来再数。

  师:你来试一试。

  学生到投影前操作。(画出格线,数出空格)

  师:哪一块空地的面积大?

  生:第二块空地的面积大。

  师:这两块空地,一共要用多少块方砖?

  生:16+18=34(块)。

  3.游戏(猜猜看)。

  师:同学们喜欢做游戏吗?(喜欢)好,我们一起来做一个游戏,规则是:同学们分两组,分别看老师出示的图形。一组同学看图形时,另一组同学不能看。

  师:(出示一个较大的被分成4格的图形)请第一组同学看,这个图形一共有几格?

  生:(齐)4格。

  师:(出示一个较小的被分成6格的图形)请第二组同学看,这个图形有几格?

  生:(齐)6格。

  师:大家来猜一猜,哪个组同学看到的图形面积大?

  生1:6格比4格多,当然6格的图形大。

  生2:不一定。说不定6格的图形格子小。

  师:究竟哪个图形的面积大呢?想不想看看这两个图形。(出示两个图形)为什么4格的图形,面积反而大?

  生1:4格的图形,每个格子大。

  生2:6格的图形,每个格子小。

  师:看来,用数格子的办法来比较两个图形面积的大小时,格子的大小要一样。专门用于计量面积的这种小方格,就是面积单位,我们下节课再来研究。

《面积》教案 篇8

  教学目标:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  教学重点:能正确计算组合图形的面积。

  教学难点:能根据各种组合图形的条件,正确选择计算方法并解答。

  教学准备: A4纸 基本图形 作业练习

  教学过程:

  一、谈话激趣,揭示课题

  师:老师第一次来到黄村小学,见到同学们我非常高兴,初次再面老师给每个同学都带来了一份礼物,快打开来看看是什么:

  1、给学生发礼物

  2、复习各个平面图形的面积公式

  (这里有长方形,正方形,三角形等,你们能说说这些平面图形的面积公式吗?)

  3、拼成自已喜欢的组合图形

  请选择两个或两个以上的图形拼成你喜欢的图形。

  4、学生展示并说一说由哪些基本图形组成的。

  (师:如果要求这个图形的面积你认为该怎样计算呢?谁来说一说?)

  5、教师总结:像这样由我们学过的一些基本图形组合而成的图形我们把它叫做组合图形,像这样的组合图形的面积要怎样求得呢?这节课我们就一起来探讨组合图形面积的计算方法。

  二、探索交流,解决问题

  1、出示教材第88页的情境图

  师:这是智慧老人家客厅的平面图,他准备给客厅铺上地板。

  2、想一想,估一估

  先让我们来估一估这个客厅的面积有多大呢?(师引导:根据这个客厅形状的特点,我们可以用学过的哪个图形的面积去估计它的大小呢?)

  (若学生估不出来)师再引导:是否可以用长为7米,宽为6米的长方形的面积去估计客厅的面积,如果可以,则客厅的面积是6*7=42平方米,所以客厅的面积不到42平方米,若看成是边长为6米的正方形的面积去做计客厅的面积,那么客厅的面积大约为36平方米。

  师:刚才我们在估算客厅面积时是把它看成我们学过的'长方形或正方形,那么我们是不是也可以把这个客厅的平面图形转化成我们已经学过的图形去计算它的面积呢?

  3、自主探索,计算面积

  师:请同学们拿出老师给大家准备的练习纸,动笔画一画,算一算。

  (师巡视,若发现学生不会再引导)刚才我们用简单的图形拼成组合图形,你能不能将这个组合图形分割成我们学过的基本图形,进而将组合图形的面积转化成已学过的图形的面积的计算。

  (1)学生动手画一画,师提示:(加一条辅助线。并将分割后的图形加上编号,再对图形1、2进行计算。)

  4、展示学生的作品,并由学生说说理由。(怎样计算的?)

  5、(展示四种已计算的分法)再对前四种进行分类)

  (师:图形分割后我们要看一看分割后计算每个图形面积所要的数据有没有?)

  板书:

  1、先转化成已学过的基本图形。

  2、分割后的图形是否可以计算。

  3、分割后的图形是否比较简单易算。

  师:组合图形面积的计算我们先将这个图形转化成已学过的平面图形,再找出计算每个图形所需要的条件再进行计算。

  三、理解运用,巩固练习

  师:通过解决智慧老人客厅的面积计算的问题,我们学习了组合图形面积的计算方法,在计算时我们一定要根据图形的实际特点,选用恰当的方法。

  老师出两题考考大家,敢接受挑战吗?

  1、出示练习,学生做在练习纸上。

  2、讲评完第一题后,操作第二题。

  四、学生畅谈收获

  通过这节课的学习,你在什么收获?

《面积》教案 篇9

  教学内容:三角形面积公式的推导和面积的计算。课本P47--P49。练习十1-3题。

  教学目标:

  1、使学生理解三角形的面积正好是它等底等高的平行四边形面积的一半,引导学生推导出三角形面积计算公式。

  2、使学生掌握三角形面积的计算公式,并能结合实际正确选择条件,应用公式计算三角形面积。

  3、通过图形的割补、剪拼,渗透图形变化的数学思考方法,并培养学生的动手操作能力。

  教学准备:多媒体课件。学生准备剪拼的还有平行四边形、长方形等三个图形与三对三角形、剪刀等。

  教学过程:

  一、复习旧知,建立基础。

  昨天我们学习了平行四边形的面积计算,请同学们回忆一下平行四边形的面积公式我们是怎样推导出来的?

  学生回答,教师小结。平行四边形的面积公式我们是通过沿高剪割、平移的方法把平行四边形转化成了长方形后推导出来的。(演示推导过程)这样我们就把要学习的新知识转化成了已会的旧知识。(板书:转化)

  我们今天也要应用这个思想来学习新知识。

  二、导入新课,揭示课题

  师:,这堂课我们学习"三角形面积的计算"(板书)。

  三、三角形面积公式的推导

  1、用数方格的方法求三角形的面积

  多媒体屏幕出示3个三角形。放在边长为1厘米的正方形方格图中。每个小方格就是多少面积?

  (1)、分别说说这三个三角形是什么三角形?

  (2)、请你用数方格的方法求出这3个三角形的面积各是多少平方厘米(不满一个的,都按半格计算,小组里分一下工,每人数一种。看哪个小组数的最快)

  边数边思考:

  (1)。如果以水平方向的边为它的底,那么高在哪里?底和高分别是多少?

  (2)。并且请你根据所得的结果猜一猜三角形的面积可能与什么有关?有怎样的关系呢?

  思考题交流。

  师:那么三角形能不能转化成我们学过的'图形来推导出它的面积计算公式呢?你想转化成怎样的图形?

  1、尝试操作

  每个学生放有九个图形,其中六个三角形。请你剪一剪,或者拼一拼。看看三角形与我们以前学过的图形有没有关系?有怎样的关系?

  要求:每个人做一次剪的实验、做一次拼的实验,小组长进行一下分工。

  交流:通过剪一剪,或者拼一拼,你发现了什么?汇报剪的情况。

  (1) 请学生把自己剪的图展示在投影仪上。说说你是怎样剪的?发现了什么?

  根据剪的情况,谁能用一句话来概括一下?

  (2)交流拼的情况,说说你是怎样拼的?通过拼一拼,你又发现了什么?

  展示在投影仪上。根据拼的情况,谁能用一句话来概括一下?

《面积》教案 篇10

  设计理念:

  本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。

  本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。

  教学目标:

  知识目标:

  1、在自主探索的活动中,理解组合图形面积的计算方法。

  2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。

  能力目标:

  1、能运用所学的知识,解决生活中组合图形的实际问题。

  2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。

  情感与价值观目标:

  1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。

  2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

  教学难点:

  选择有效的计算方法解决实际问题。

  教学过程:

  一、复习旧知,引入新课

  1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。

  2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)

  [设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]

  二、探索组合图形面积计算方法

  1、割

  那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。

  这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。

  [设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]

  2、补、大面积—小面积

  出示一个组合图形

  (1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

  师:谁来说说你是用哪种方法计算的。

  生介绍,师根据学生的介绍演示不同的方法。

  师:这几种方法你们最喜欢哪一种呢?

  师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

  (2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积—小面积)

  3、小结求组合图形面积常用的方法

  割、补、大面积—小面积。

  4、小试牛刀

  课后第一题。

  请说说你用了什么方法。你更喜欢哪种方法?

  5、挑战

  (1)独立思考

  (2)讨论

  (3)移、拼的方法

  [设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]

  3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?

  [设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]

  4、练习:课后2、3

  板书:

  长方形面积=长×宽 割

  正方形面积=边长×边长 补

  平行四边形面积=底×高 拼

  三角形面积=底×高÷2写 大面积—小面积

  梯形面积=(上底+下底)×高÷2

《面积》教案 篇11

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的`半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

《面积》教案 篇12

  一.教学目标:

  1.理解和掌握圆柱体的侧面积和表面积的计算方法。

  2.会运用公式计算圆柱体的侧面积、表面积,能初步解决有关圆柱的实际问题,培养和发展学生初步的空间观念。

  3.渗透事物之间互相联系和转化的唯物主义观点,培养认真审题、仔细计算、自觉验算的良好习惯。

  二.教学重点:掌握求圆柱体的侧面积和表面积的方法。

  三.教学难点:会应用有关圆柱的特征以及计算表面积的公式,解决一些简单的实际问题。

  四.教具:圆柱表面展开图教具

  五.学具:学生制做好的硬纸片圆柱模型,剪刀。

  六.教学设计说明:

  本节课的教学目标是理解和掌握圆柱体的侧面积和表面积的计算方法,培养和发展学生初步的空间观念,并且渗透事物之间互相联系和转化的辨证唯物主义观点。教学重点是掌握求圆柱体侧面积和表面积的方法。本节课的教学设计分为三个层次。

  第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。

  第二层次:推导圆柱体的侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。然后,运用圆柱侧面积公式进行计算。为提高学生学习兴趣,活跃课堂气氛,接着给学生播放一段有关圆柱知识的动画。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。教育学生在实际应用中要具体问题具体分析。

  第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。针对一些特殊的题型:只有侧面的圆柱,只有一个底面的圆柱等,以举实物来让学生判断怎样计算的形式进行练习。

  七.教学过程设计:

  一、复习

  1、课堂上出示矿泉水瓶,剪出圆柱体那一部分?

  问题:哪位同学能说出圆柱体有哪些特征?

  回答:圆柱体有两个底面,它们是面积相等的两个圆。圆柱体有一个侧面;有无数条高,圆柱的高处处相等。

  二、新授

  剪开矿泉水瓶的包装纸,想想:

  1、怎样才能求出矿泉水瓶圆柱体包装纸的面积?

  2、不把包装纸剪开,能不能求出包装纸的面积呢?怎样求?(小组合作探究解决。写出小组解决方法)

  3、总结圆柱侧面积的计算方法。(底面周长高)

  4、如果还需要把上、下两个底面也用纸皮封好,那至少需要多少纸皮?

  在解决过程中总结圆柱体表面积的计算方法。

  5、解决实际问题:(课件出示)

  要做一个高为1厘米,底面直径是3厘米的圆柱形塑料瓶盖,需要塑料多少平方厘米?

  三、练习

  1.教师举出实物让学生指出它们和所学知识之间的联系,再分别说出如何计算表面积:

  ①、圆柱形状的烟筒、压路机的滚筒、油漆圆柱体柱子。

  ②、圆柱形状的笔筒、水杯。

  ③、圆柱形状的茶叶筒、油筒。

  2.做一做:(幻灯片出示)

  1.要油漆竖立在大厅的一根底面周长是94.2厘米,高是2.5米圆柱形柱子,需要油漆多大的面积。

  2.一个圆柱,底面直径是2分米,高是45分米,求它的表面积。

  四、总结

  今天这节课我们学习了圆柱的侧面积、表面积的计算方法,在实际应用中要具体问题具体分析